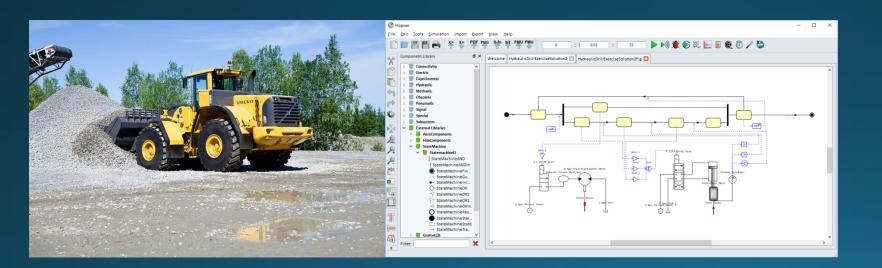
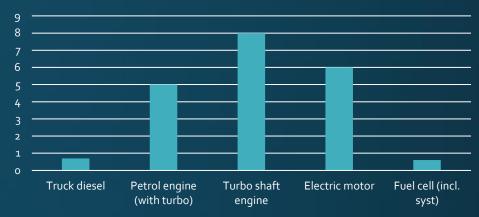
Petter Krus, LiU


POWER FOR AVIATION AND RELATED AREAS

LiU/Fluid and Mechatronic Systems

- Research in fluid power (hydraulics), mobile applications
- Aircraft system design

Flyget i proportion till annat


- Svenskars flygande 2019 ca 10 milj ton CO2
- Svenskars bilåkande 2019 ca 10 milj ton CO2
- SSABs direkta CO2 utsläpp på 9,8 miljoner ton
- Tunga vägtransporter 5 milj ton CO2
- Arbetsmaskiner 3.5 milj ton CO2
- Fartyg till och från Sverige, 8 milj ton CO2

Specific Power

Truck diesel	o.7 kW/kg
Petrol engine (with turbo)	1-8 kW/kg
Turbo shaft engine	6-10 kW/kg
Electric motor	1-10 kW/kg
Fuel cell (incl. syst)	o.4-o.8 kW/kg
1932 Pratt & Withney	1.2 kW/kg

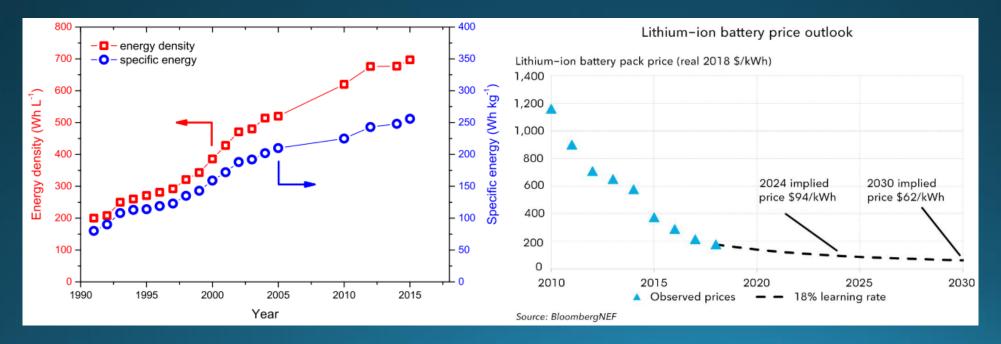
Specific power [kW/kg]

GeeBee racer 1932 Max speed 476 km/h Engine 50% of empty weight

Saab 340 Max speed 502 km/h Cruise 467 km/h Engine 5% of empty weight

Specific Energy

	Specific Energy	Energy density
Kerosene (about the same as petrol and diesel)	12000 Wh/kg	9200 Wh/l
Battery (Tesla, pack level)	177 Wh/kg	711 Wh/l
Hydrogen	30000 Wh/kg	2800 Wh/l
Pressurized Hydrogen tank (700 bar)	3000 Wh/kg	767 Wh/l

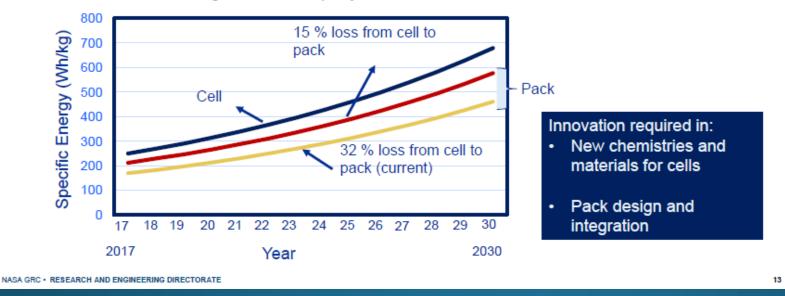

Truck diesel	0.4
Petrol engine (with turbo)	0.25
Turbo shaft engine	0.5
Electric motor	0.95
Fuel cell (incl. syst)	0.4-0.6
Battery	0.96
LINKÖPING UNIVERSITY	

Efficiency

Fuel cell+electric motor comparable to combustion engine

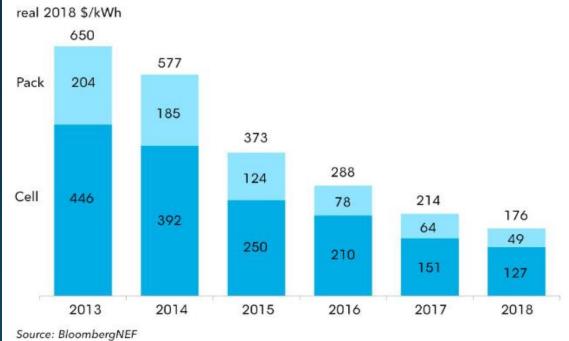
Technology Forecasting: Batteries for Electric Cars

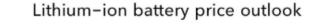
- Assuming incremental refinement of Li-ion technology
- (Placke et al., 2017) suggests about 3 Wh/kg/year.
- 2019 156 Wh/kg 135USD/kg =1283 SEK/kg
 2024 171 Wh/kg 94USD/kg =902 SEK/kg

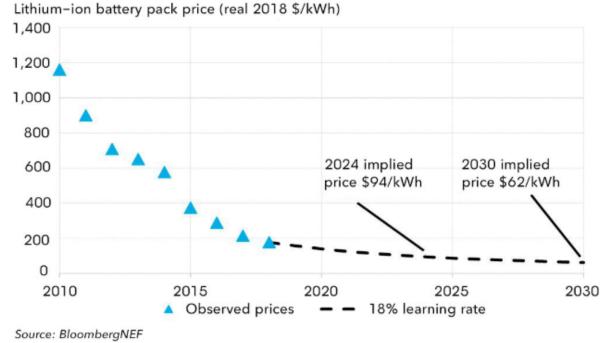


Technology Forecasting for Aviation (NASA)

Projected Advances in Battery Technology


Rate of increase in specific energy is typically on the order of 5 - 8% per year Specific energy loss from cell to pack is typically 50 to 60%


Assuming 8% increase per year at cell level



Battery cost

Lithium-ion battery price survey: pack and cell split

Electric Trucks

Cars are rapidly going into the technology comfort zone for batteries.

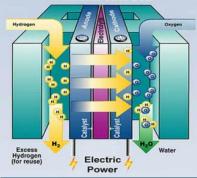
Short and medium range trucks could use battery. *Technology comfort zone*

Long haul trucks requires 4.5 h driving and 45 min rest.

A 40 ton long haul truck could do this with about 2 ton of batteries (4 with reserves). 10% should be doable if required. *Technology sensitive*

[7]

Would require charging of >0.5MW.


INKÖPING JNIVFRSITY

Fire safety?

- Hydrogen storage and Fuel cells could be a viable option.
- System weight would be between that for a diesel truck and a battery truck
- Electric roads? ...not likely, huge investment (60-100 billion SEK in Sweden)...

Electric Construction Machines

- Excavators have an average power much less than trucks.
- A workday on a battery charge could be done. *Technology sensitive*
- Construction on sites often without a charging infrastructure.
- Fuel cell is interesting.

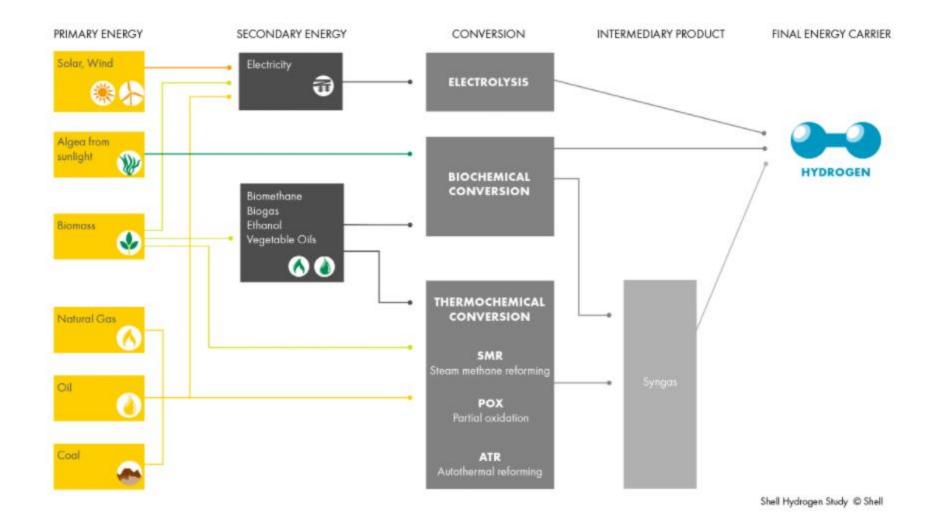
Aircraft

- Burning hydrogen directly in the engines.
- Hydrogen storage system is a problem especially for long haul (low energy density, J/m³)
- Airbus points at this for short and medium range aircraft.

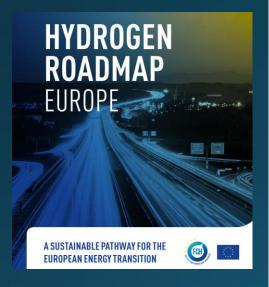
Airbus concept from 2001

- Battery is hardly relevant
- An optimistic theoretical range is about 560km with 50% takeoff weight with batteries. Commercial range means that an alternative airport should be reached and an extra 45 min loitering, severely restricting the operations making it CO2 irrelevant.
- Technology critical/impossible

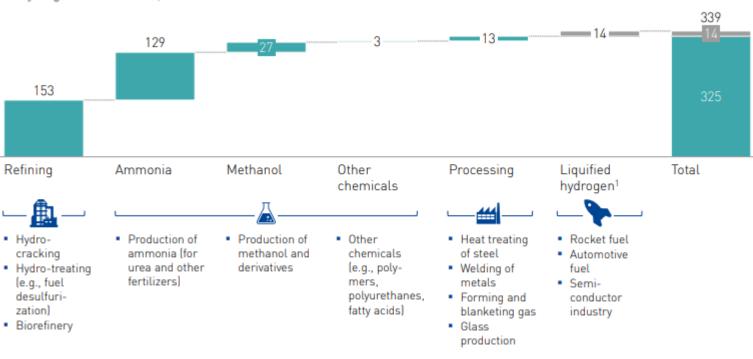
Aircraft


Fuel cells have low power density making it useful for only slow aircraft (commuters). *Technology sensitive*

They have to compete head-on with hydrogen burning aircraft of comparable efficiency.


Business case have to build on secondary aspects, e.g. maintenance.

Hydrogen Production



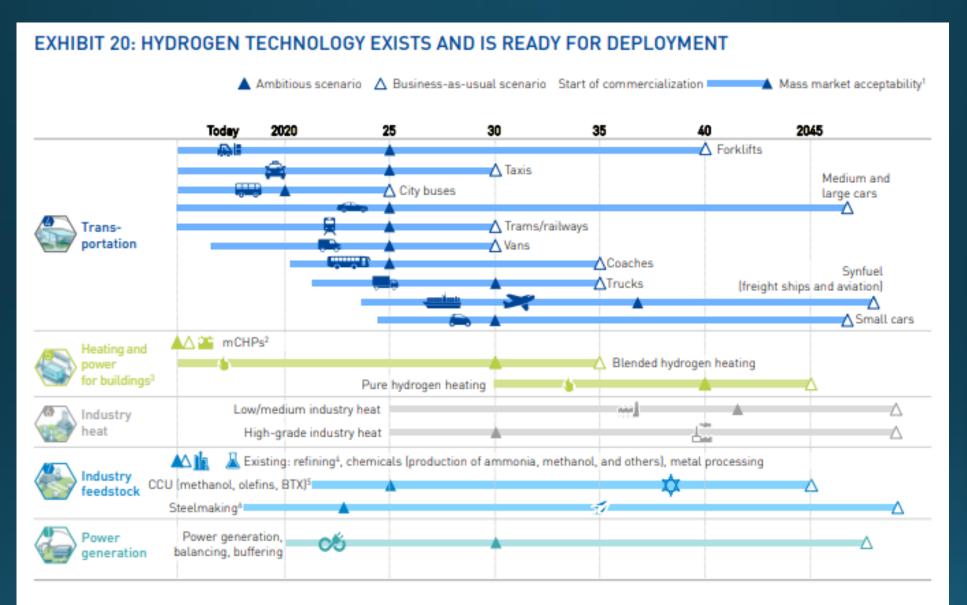

Hydrogen use today

EXHIBIT 17: USE OF HYDROGEN TODAY

Total hydrogen use in the EU, in TWh

1 Defined as sales >1% within segment 2 mCHPs sales in EU independent of fuel type [NG or H₂] 3 Pure and blended H₂ refer to shares in total heating demand 4 Refining includes hydrocracking, hydrotreating, biorefinery 5 Market share refers to the amount of production that uses hydrogen and captured carbon to replace feedstock 6 CDA process and DRI with green H₂, iron reduction in blast furnaces, and other low-carbon steelmaking processes using H₂

Flyget i proportion till annat

- Svenskars flygande 2019 ca 10 milj ton CO2
- Svenskars bilåkande 2019 ca 10 milj ton CO2
- SSABs direkta CO2 utsläpp på 9,8 miljoner ton Vä
- Tunga vägtransporter 5 milj ton CO2
- Arbetsmaskiner 3.5 milj ton CO2
- Fartyg till och från Sverige, 8 milj ton CO2

Vätgas/synfuel Batteri Vätgas Batteri/vätgas Batteri/vätgas vätgas/synfuel

Hydrogen Xchange Hudiksvalls Hydraulikkluster HHK & region Gävleborg

- Fri 2020-12-11 13:00 16:20
- Seminarium med Sandvik, FCH (Fuel Cells and Hydrogen Joint Undertaking), Region Gävleborg mfl.